
1

HBD clusterizer with built in background subtraction

Ermias Atomssa
HBD meeting
2010.06.02

2

Intro 1
● An alternate clusterization algorithm is being developed

● Main point: Background is handled by subtracting average per pad
background estimated from surrounding area

● It is still under development and testing but for people interested, its
been submitted to cvs (in offline/analysis/hbd_proto)
– It works like any other analysis module

– Clusterizer: offline/analysis/hbd_proto/HbdLbsClusterizer

● For this to work, one has to locally compile offline/packages/hbd after
editing Makefile.am to add HbdBlobListv1.h to install headers

– Embedding tests: offline/analysis/hbd_proto/HbdEmbed

– Ntuples and plotting: offline/analysis/hbd_proto/HbdAnalysis

– Simulation tuning: offline/analysis/hbd_proto/HbdMcChargeRecal

● There is still a lot of debugging couts and some valgrind errors.
– The code can be improved in efficiency and style

– Any input is welcome, and feel free to modify if you have ideas or let me know

3

Intro 2: A new clusterization algorithm
● Better of the two worlds:

● Like Weizmann clusterizer: two steps, “preclusterization” and merging.
– But, before merging there is a control step where preclusters are selected based on

a few criteria

● Like HnS clusterizer: preclusters are triplets, most natural shape for the
hexagonal symmetry of the HBD pads
– It doesn't need to depend on the projection of electrons even in high background

environment. Though this information can be used if needed.

● And a little bit more....
● At the preclusterization step, a local background subtraction is internally

(without the use of parametrization) applied.
– This is done by estimating the background level from neighboring pads of the

precluster. There seem to be (cf slide 5) reasonable correlation to warrant this

● After merging, the final cluster's background is subtracted using
neighboring pads

● For this reason, will refer to the new clusterizer as of LBS (local
background subtraction) method

4

Preclusterization
● First step of the algorithm is the

selection of preclusters.
● Candidates for preclusters are all possible

compact triplets in the HBD (def. All
members sharing a single edge with the
other two members)

● Preclusters have
● first neighbors

● and second neighbors.

● And they cross borders

● They have the following properties:
● Charge & area of Members

● Charge & area of 1st & 2nd neighbors

● Net signal in the “member” zone

● “Shape” meaning distribution of net charge
among pads in member zone

5

mem=triplet member fn=first neighbor, sn=second neighbor
 a=area, q=number of photoelectrons

w= weight, for now set to 0.5

bkg=amem∗
w fn∗q fn
afn

1−w fn ∗q fn

asn

● Basic assumption of the method
● Scintillation background varies continuously over HBD surface

● Background in any compact group of pads can be estimated from the average rate of
npe in its neighboring pads

Justification of background estimation

6

● Basic assumption of the method
● Scintillation background varies continuously over HBD surface

● Background in any compact group of pads can be estimated from the average rate of
npe in its neighboring pads

Justification of background estimation

7

bkg=amem∗
w fn∗q fn
afn

1−w fn ∗q fn

asn

● Basic assumption of the method
● Scintillation background varies continuously over HBD surface

● Background in any compact group of pads can be estimated from the average rate of
npe in its neighboring pads

Justification of background estimation

8

Precluster selection
● Don't want to keep everybody

● Code will be slow

● Will end up with superbig clusters

● What to keep?
● Reasonable net signal

– For now keeping 5<sig(npe)<50

– This spans both the singles and
doubles expected charge in a triplet

● Reasonable S/B
– We can cut on estimated S/B

– Optimization will be shown later

● Shape cut
– Distribution of a couple of such

parameters will be shown later for
data and MC

9

HIPs: an issue with a solution
● The pad by pad charge distribution has a

very long tail

● Caused by physics processes that deposit a
huge amount of energy

● Much more than typical per pad charge
expected from either scintillation or
Cerenkov

● Rate is proportional to intensity

● X-ray, neutrons heavy particles?

● These pads if left alone are a big
problem for any clusterization algorithm,
because they can seed fake clusters.

● Fortunately, event by event, they cover
only a very small fraction of the active
HBD area

10

Effect of upper limit on pad npe
● Before clusterization one can set npe=0 for those pads that fire above a

certain upper limit
● Plot on left: Event averaged fraction of acceptance loss incurred by throwing out

pads firing above un UL, vs. the value of the ul for different centralities

● Plot on right: Fraction of pads firing above upper limit to those firing below upper
limit but still above threshold

Cutting at 50 seems safe. <2% of fired pads are lost
even in most central event

11

Merging and post merging
● Overlapping preclusters

● Share atleast one pad

● Final clusters
● Lump together pads from all

overlapping groups of preclusters

● Local bkg. subtraction
● Merged clusters have 1st and 2nd

neighbors just like preclusters

● 1st and 2nd neighbor charge is
used to estimate background to
subtract from the members of
merged cluster

● Cluster track association
● Nothing new here, based on

proximity just like in Wis & HnS

12

Validation
● For the validation here is the program

● Single electron simulation with no background
– Simulation tuning, geometry cross check, shape study

● Single electron simulation with “emulated” background
– Optimization of precluster selection criteria, fake rate, cluster size, cluster rates

● Double electron simulation (Conv. and Dalitz) w/ & w/o emulated Bkg
– Confirm doubling of the cluster signal, estimate misidentification rate from doubles

 created midway inside the HBD

● p+p events

● Event Accumulator/ Embedding
– More realistic background. Do we still get same answer from the clusterizer for

simulated electrons?

– Embedding already implemented (initial test on single electrons)

● Real Au+Au data
– Cluster shape, singles/doubles/hadron charge comparison, Analysis

13

Single electrons, no background
● Usual PHENIX chain

● x,y,z = 0,0,±20
● Full Hbd response

● Run clusterizer
● Dphi, Dz look very good

– Except for wings at +-20cm
for dz

● This demonstrates that the
geometry is being used correctly
in the code.

●

14

Cluster charge and size distributions
● Cluster charge distrib.

● Off by a factor of ~2.7
– Running a 'Recal' module that

divides every pad by this factor

– This should be done only on
Cerenkov signal

● Cluster size distribution
● Cluster sizes are somewhat

big.

● Current merging mechanism
tends to add 1st neighbors

● This should not have too
much effect on the cluster
charge since background is
subtracted event by event

15

Mimic the real data backgrond
● Attempt to generate RD like

background

● M (Poisson RV mean) and tau
(Exp. RV decay const.) are
hand tuned to match the RD
pad charge distribution
– Ten centrality bins of 10%

– The long tail in RD is hard to
reproduce (probably coming from
jets? If so maybe can be added
with some effort.)

– This kind of detail matters for
clusterizing

● Using temporarily as a rough
approximation to scintillation
background

q=∑
0

P M

exp

16

Optimizing s/b precluster selection cut
● Single electron cluster efficiency vs. s/b cut

● Fraction of simulated single electrons that get associated with a cluster

● vs. s/b cut using 'faux' scintillation background tuned to different centrality selections

● The sudden drop in efficiency happens at the same position for all centralities, which
points to a possible problem with the background emulator

● Accumulator or embedding should give a better picture

17

Average number of clusters per event
● Similar structure as for the efficiency

● The drop in number of clusters occurs earlier than for the efficiency

● With a s/b cut at 2, the efficiency is still > 90% but <Nclu> is down to less than 10

● This has to be confirmed by more realistic background env.
– Embedding the simulated electron into events where there is no identified electron

18

Embedding MC Cerenkov response in RD
● Embedding is another option to see the effectiveness of a clusterization algorithm with real

background

● Simulate single (or double) electrons

● Pad by pad add the signal from events in real data to the Cerenkov response from simulation

● Run the clusterizer on merged HbdCellList

● Easy to implement real data event selection based on any criteria (bbcz, presence of electrons etc..)
but not implemented yet. More to come...

● Embedding can be a useful tool to study the performance of a clusterizer (efficiency and stability in
high background environment

Single electron cluster charge
distribution after embedding

Single electron cluster size
distribution after embedding

19

Cluster shape
● Distribution of charge among triplet member pads can be used to select

preclusters

● Tried two variables q1/(q1+q2+q3) and q3/(q1+q2) where q1 to q3 are the charges
measured in the three pads of the triplet in decreasing order

● There seems to be some possibility to use these or similar variables but it requires serious
validation of the MC response of the HBD

20

Summary
● A new clusterization algorithm

● Preclusterization: all triplets, s, b, shape

● Selection:

– Tighter selection criteria at this step => Loss of efficiency but also more stable results in terms of
cluster size and charge

– Optimization is simple and possible

● Merging is straight forward if selection is done well

● The geometry use inside the clusterizer is validated using single electron
simulation

● How a selection criteria can be optimized is demonstrated using s/b cut
and faux scintillation background

● Other potential selection parameters (shape) distribs shown.

● Things left to do:
● Make the scintillation background more realistic

● See the doubles responses

● Less urgent but still important: Optimize the code itself, make it leak free

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

